Anxiety Sensitivity and Attentional Bias to Threat

Interact to Prospectively Predict Anxiety

Joseph R. Bardeen1 & Thomas A. Daniel2

1Auburn University

2Westfield State University

NOTICE: this is the author’s version of a work that was accepted for publication in \textit{Cognitive Behaviour Therapy}. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in \textit{Cognitive Behaviour Therapy}.

Author Note

Joseph R. Bardeen, Department of Psychology, Auburn University. Thomas A. Daniel, Department of Psychology, Westfield State University.

Correspondence concerning this article should be addressed to Joseph R. Bardeen, Department of Psychology, Auburn University, 226 Thach Hall, Auburn, AL 36849-5214. Voice: 334-844-6647, E-mail: jbardeen@auburn.edu.
Abstract

The purpose of the present study was to examine anxiety sensitivity, attentional bias to threat (ABT), and the aggregate influence of these constructs as prospective predictors of anxiety. Participants \((N = 176)\) completed a baseline assessment session which included the completion of self-report measures of anxiety and anxiety sensitivity, as well as an eye-tracking task in which eye movements were recorded during the viewing of neutral and threat images. Measures of anxiety and anxiety sensitivity were completed again as part of an online questionnaire battery at a 1-year follow-up session. As predicted, baseline anxiety sensitivity and ABT predicted anxiety at 1-year follow-up even after accounting for baseline anxiety. However, these main effects were qualified by a significant interaction effect such that those high in anxiety sensitivity at baseline reported relatively higher anxiety at the 1-year follow-up, but only if they also exhibited higher levels of ABT at baseline. Results suggest that individuals with this combination of vulnerability factors (high levels of both anxiety sensitivity and ABT) may be at particularly high risk for developing anxiety and may benefit from preemptive efforts to reduce ABT.

Keywords: anxiety sensitivity, anxiety, attentional bias, eye tracking, longitudinal
Anxiety disorders are the most prevalent mental health disorder in the United States (US), as well as in the large majority of developed countries (Bandelow & Michaelis, 2013; Kessler, Chiu, Demler, & Walters, 2005). Prevalence estimates suggest that as many as 18% of Americans will experience an anxiety disorder in a given year and over 30% of the population will be afflicted with an anxiety disorder at some point during their lifetime (Kessler et al., 2005). The impact of anxiety goes well beyond the intense psychological distress experienced by those suffering from an anxiety disorder. The human burden includes impairments in social, occupational, and family functioning, as well as poorer physical health and diminished quality of life (Hoffman, Dukes, & Wittchen, 2008). The economic burden of anxiety disorders exceeds 40 billion dollars annually in the U.S. (DuPont et al., 1996; Greenberg et al., 1999; Kessler & Greenberg, 2002) and over 40 billion Euros annually in the European Union (Andlin-Sobocki & Wittchen, 2005). The staggering costs of anxiety disorders—in both human suffering and economic burden—have resulted in a wealth of research focused on identifying vulnerability and protective factors for anxiety with the goal of ameliorating these negative outcomes.

Anxiety sensitivity (AS) is one such vulnerability factor that has been implicated in anxiety and related disorders (for a review see Naragon-Gainey, 2010). AS is conceptualized as a trait-like (e.g., Bernstein et al., 2005; 2007) fear of arousal-related sensations due to beliefs that such sensations will have adverse psychological (e.g., mental incapacitation), social (e.g., negative social evaluation), and physical outcomes (e.g., heart attack; Reiss & McNally, 1985). One of the primary distinctions between AS and trait anxiety is in the stimuli that elicit fear responding. Specifically, trait anxiety is indicative of a propensity to respond with fear to
stressors in general, whereas for anxiety sensitivity, fear responding is specific to anxiety-related sensations (McNally, 2002). The distinction between these constructs is further supported by longitudinal evidence showing differential relations among outcomes of interest. For example, when accounting for baseline trait anxiety, AS prospectively predicts (a) panic symptoms over a one-year period among patients with simple phobia and nonclinical controls (Ehlers, 1995), (b) panic symptoms over a five-week period of high stress (i.e., US Air Force basic training; Schmidt, Lerew, & Jackson, 1997), and (c) trait anxiety over a five-week period among undergraduate students (Bardeen, Fergus, & Orcutt, 2014).

Although prospective evidence suggests AS as a vulnerability factor in the pathogenesis of anxiety (e.g., Ginsburg & Drake, 2002; Hayward, Killen, Kraemer, & Taylor, 2000; Schmidt, Lerew, & Jackson, 1999; Schmidt, Zvolensky, & Maner, 2006), it is not entirely clear how and under what conditions AS leads to anxiety. Because of its trait-like nature, and the speed with which behavioral and physiological responses to anxiety-provoking stimuli have been observed, AS is considered a cognitive vulnerability related to bottom-up, or more automatic processing (e.g., information processing biases; Teachman, 2005). Specifically, AS is thought to increase sensitivity to aversive stimuli, such as fear-related physiological sensations (Zvolensky & Forsyth, 2002) and anxiety-provoking external stimuli (Hunt, Keogh, & French, 2006), thus exacerbating fear responding and increasing the likelihood of developing anxiety pathology (Taylor & Cox, 1998).

Although a number of cross-sectional studies have provided evidence of the proposed link between AS and the preferential processing of threat information (e.g., attentional bias to threat [ABT]; e.g., Hunt et al., 2006; Koven, Heller, Banich, & Miller, 2003; Schoth, Golding, Johnson, & Liossi, 2016), there is a paucity of longitudinal evidence supporting ABT as a
vulnerability factor for the development of anxiety, which is a central tenant of several prominent theoretical models of the nature of relations between ABT, fear responding, and anxiety (e.g., for a review, see Van Bockstaele et al., 2014). In fact, Van Bockstaele et al. (2014) identify this issue of temporality (i.e., ABT preceding the onset of fear and anxiety-related outcomes) as a “major gap in the current state of the literature.”

In one of the few longitudinal studies to examine temporal relations among ABT and fear-based outcomes, children participated in multiple assessments beginning at 24-36 months of age through mid-adolescence (Perez-Edgar et al., 2011). As predicted, behavioral inhibition in toddlers predicted social withdrawal and higher levels of ABT in adolescence. Interestingly, ABT moderated the association between behavioral inhibition and social withdrawal; that is, higher levels of behavioral inhibition in toddlers only predicted social withdrawal in adolescence among those who also had higher levels of ABT. In contrast, some evidence suggests that (a) reductions in fear and anxiety lead to reductions in ABT (e.g., Mogg & Bradley, 1998), and (b) attentional bias is acquired simultaneously with, or shortly after, fear acquisition. Importantly, these findings do not preclude ABT as a vulnerability factor for anxiety. Instead, as described by Van Bockstaele et al. (2014) and others (e.g., Eysenck, 1997), the relationship between ABT and anxiety is likely best conceptualized as bidirectional and mutually reinforcing rather than unidirectional. That is, attentional biases may be both a risk factor for, and consequence of, anxiety. Early processing biases may elicit anxious responding, including the propensity for attentional focus to narrow, which exacerbate anxious arousal and prolong negative affective states. Similarly, the relationship between AS and ABT may also be bidirectional (mutually reinforcing) and have an aggregate effect on anxiety similar to that which was observed by Perez-Edgar et al. (2011). That is, the effects of AS and ABT on anxiety may be interactive, with
the association between AS and anxiety becoming increasingly stronger with increasing levels of ABT. Thus, ABT may determine the degree to which AS is associated with anxiety.

Equivocal findings in the extant literature may also be the result of methodological limitations, including the use of indirect measures of ABT that use response times (i.e., finger press) and are prone to poor reliability (Schmukle, 2005), and the use of word stimuli which require greater semantic processing (Pineles, Shipherd, Mostoufi, Abramovitz, & Yovel, 2009). Eye-tracking equipment was used in the present study to provide a more precise and direct measure of ABT. Specifically, assessing ABT via eye movements is less susceptible to alternate explanations than measures that use button press to make inferences about cognitive processes. Additionally, indices of attentional bias obtained via eye tracking (i.e., proportion of viewing time on threat versus neutral stimuli) have been shown to have adequate reliability in comparison to other commonly used methods of assessing ABT (e.g., dot-probe task; Schmukle, 2005; Staugaard & Rosenberg, 2009; Waechter, Nelson, Wright, Hyatt, & Oakman, 2014). Images from the International Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 1999) were used in the present study to reduce the processing demands associated with word stimuli and because they have higher ecological validity and are resistant to familiarity and frequency of use (Bradley et al., 1997).

To date, longitudinal evidence in support of ABT as a vulnerability factor for anxiety is lacking. Based on prominent conceptual models of the pathogenesis of anxiety (see Van Bockstaele et al., 2014), we predicted that greater ABT at baseline would predict greater anxiety at a 1-year follow-up assessment session. Consistent with previous research (see Naragon-Gainey, 2010), we predicted that greater AS at baseline would predict greater anxiety at 1-year follow-up. Importantly, we predicted that these main effects would be qualified by a significant
interaction effect such that the relationship between baseline AS and follow-up anxiety would be significantly stronger at higher, versus lower, levels of ABT. A baseline measure of anxiety was included in our data analytic model to ensure that the proposed interaction accounted for unique variance in anxiety at the 1-year follow-up.

Method

Participants

Participants for the current study ($N = 181$ undergraduate students) were recruited from a mass testing pool at a mid-sized U.S. university. Eligible participants were between the ages of 18-64, fluent in English, and did not have an uncorrected visual impairment. The eye-tracker failed to capture eye movements for five participants, thus resulting in a final sample of 176 participants. The majority of the sample was female (73%) and the average age was 20.4 years ($SD = 3.5$). Regarding racial/ethnic identification, 91% self-identified as White, 4% as Black, 2% as Asian, 1% as American Indian or Alaska Native, and 2% endorsed “other”. An additional 5% of the sample reported being of Hispanic ethnicity. Sixty-five of the 146 participants who consented to follow-up contact completed an online battery of questionnaires one year after the initial laboratory session. The majority of this subsample was female (79.1%) and the average age at the 1-year follow-up assessment was 21.2 years ($SD = 2.0$). Regarding racial/ethnic identification, 85% self-identified as White, 8% as Black, 3% as Asian, 2% as American Indian or Alaska Native, and 2% endorsed “other”. An additional 6% of the follow-up sample reported being of Hispanic ethnicity.

Self-report Measures

Anxiety was assessed at both time points via the Anxiety Scale of the Depression Anxiety Stress Scales (DASS-21 Anxiety; Lovibond & Lovibond, 1995a). The DASS-21 Anxiety Scale is
composed of seven self-report items (e.g., “I felt scared without any good reason”) which are rated on a 4-point scale (0 = *Did not apply to me at all* to 3 = *Applied to me very much, or most of the time*). The DASS-21 Anxiety Scale has shown adequate psychometric properties, including strong convergent validity (Antony, Bieling, Cox, Enns, & Swinson, 1998) and the ability to discriminate between mood and anxiety disorders (Brown, Chorpita, Korotitsch, & Barlow, 1997). Additionally, because the factor structure and performance of items are consistent across clinical and nonclinical samples (Lovibond & Lovibond, 1995b), the DASS-21 Anxiety Scale is well suited for use in nonclinical samples.

AS—fear of arousal-related sensations due to physical, cognitive, and social concerns—was assessed at both time points via the Anxiety Sensitivity Index–3 (ASI-3; Taylor et al., 2007). The ASI-3 is composed of 18 self-report items (e.g., “It is important for me not to appear nervous”) which are rated on a 5-point scale (0 = *Very little* to 4 = *Very much*). The ASI-3 has demonstrated adequate psychometric properties, including convergent and discriminant validity, internal consistency, and criterion-related validity (Taylor et al., 2007).

Equipment

At baseline, participants used a computer keyboard and mouse to complete self-report measures and an eye-tracking task on a Hewlett Packard Z230 desktop computer with a 24-inch BenQ XL2430 monitor. Qualtrics (http://www.qualtrics.com/) was used to present self-report measures. Eye movements were recorded via a Tobii X2-60 Eye Tracker, and Tobii Pro Studio, E-prime 2.0 software, and E-Prime Extensions for Tobii (Psychology Software Tools, Pittsburgh, PA) were used to present stimuli and control recording processes. The X2-60 uses infrared diodes to generate reflection patterns on the cornea of the eye which provides Tobii Pro Studio with the necessary information to determine gaze point coordinates, distance of the eye from the
tracker, and pupil diameter every 16.7 ms (60 Hz). The I-VT fixation filter, offered through Tobii Pro Studio, was used with standard settings because it provides highly accurate fixation classifications. We also utilized the gap fill-in function because it uses linear interpolation to fill gaps in gaze points that are less than 75 ms in length, thus reducing data loss while simultaneously ensuring that longer gaps that are more typical of blinking or looking away (e.g., 100 ms and greater) are recorded as missing data. Missing gaze points due to temporarily looking away from the screen, blinking, or other measurement error, were discarded. The large majority of observations (84.35%) were able to be used in data aggregation.

Eye-Tracking Task

Pictorial stimuli (IAPS; Lang et al., 1999) were used to induce a visceral emotional experience conducive to bottom-up reactivity (e.g., anxiety sensitivity), and because they require less semantic processing (i.e., top-down) than word stimuli (Pineles et al., 2009) and are resistant to familiarity and frequency of use (Bradley et al., 1997). Forty threat (e.g., vicious dog, car accident) and 80 neutral (e.g., broom, busy pedestrian sidewalk) images, used in previous research (Bardeen, 2015; Bardeen, Daniel, Hinnant, & Orcutt, 2016), were used in the present study. General threat images had high arousal ($M = 6.52$) and negative valence ($M = 2.17$) ratings. Neutral images had low arousal ratings ($M = 2.96$) and ratings of valence were neither negative nor positive ($M = 5.12$; Lang et al., 1999).

Participants were required to follow a dot across the computer screen to calibrate the tracker. Next, a standard set of free-viewing instructions (Buckner, Maner, & Schmidt, 2010) appeared on the screen with the additional instruction that participants were to use the computer keyboard to identify a fixation target at the beginning of each trial (either an “O” or an “X”). This ensured central fixation prior to the beginning of each trial (Armstrong, Olatunji, Sarawgi,
Next, a neutral-neutral or threat-neutral image pair appeared on the screen for 3,000 ms. The 3,000 ms trial window has been used in previous eye-tracking research to examine ABT (Armstrong, Blisky, Zhao, & Olatunji, 2013) and evidence suggests that this trial window provides ample time to disengage attention from prepotent stimuli (Amir, Elias, Klumpp, & Przeworski, 2003; Buckner et al., 2010). Threat expectancy was reduced through the use of the neutral-neutral image pairings. A research assistant (RA) provided corrective feedback during completion of five practice trials. Finally, participants completed a single block of 60 trials. The order of image type was randomized across participants. IAPS images intersected at a visual angle of 13.3° × 12.4°. The two images were separated by a vertical distance of 14 cm, resulting in a visual angle of separation of 12.4° at a viewing distance of 60 cm. Consistent with previous research (e.g., Waechter et al., 2014), ABT (i.e., total dwell time) was calculated as the percent of time attending to threat versus neutral stimuli for neutral-threat presentations. Total dwell time, over the course of the 3,000 ms trial window, was used to assess ABT because other common eye-tracking indices (e.g., proportion of first fixations on threat, latency to first fixation on threat) have been shown to result in unacceptably low reliability estimates; indices based on longer trial windows (i.e., > 1,500 ms) greatly improve reliability (Waechter et al., 2014).

Procedure

At the initial laboratory session, participants completed informed consent, a battery of self-report questionnaires, and an eye-tracking task in a private room. Participants were debriefed before leaving and compensation was provided (i.e., credit for the psychology course of their choosing). Informed consent and self-report measures were administered at the 1-year follow-up assessment via a secure online survey program. Participants were able to complete this session from any computer with internet access. Financial compensation (i.e., $20) was provided for
participating in this session. The interval between these sessions was approximately one year ($M = 368$ days; $SD = 28.5$; range 308 to 541 days). Study procedures were approved by the local institutional review board.

Results

Attrition Analysis

Participants who completed the follow-up assessment were compared to eligible nonresponders on demographics (i.e., age, sex, race/ethnicity) and variables measured at baseline (i.e., anxiety, AS, ABT). Race and ethnicity were collapsed into a single dummy coded variable (coded as non-Hispanic White [12.5%] or Hispanic and/or non-White [87.5%]). There were no differences between those who attrited and those who did not on any of these variables: age ($t[174] = 0.57, p = 0.57$), sex ($\chi^2[1, N = 176] = 2.37, p = 0.12$), race/ethnicity ($\chi^2[1, N = 176] = 1.84, p = 0.18$), anxiety ($t[174] = 0.12, p = 0.91$), AS ($t[174] = 1.21, p = 0.23$), and ABT ($t[174] = 1.34, p = 0.18$).

Path Analysis

Descriptive statistics (i.e., means, standard deviations) and reliability estimates are presented in Table 1. Consistent with Aiken and West (1991), predictor variables were mean-centered and an interaction term was calculated as the product of the predictor and moderator variable. To provide a more stringent test of the targeted predictions, we included the baseline measure of anxiety (DASS-21 Anxiety) in the model, as well as AS assessed at the follow-up session. This resulted in a two time-point partially cross-lagged panel design in which AS and anxiety served as both predictor and outcome variables (see figure 1). This model was tested using Amos software (Version 24; Arbuckle, 2010). Maximum likelihood estimation was used to account for missing data points and all variables were modeled as manifest indicators. The
manifest indicators within each time-point were allowed to correlate. Fit statistics were not computed because a just-identified model provides perfect fit to the data. Standardized path coefficients are presented in Figure 1. The effect sizes of the path coefficients presented in Figure 1 can be determined using the following guidelines from Cohen (1992): values around .10 are considered small, values around .30 are considered medium, and values around .50 or higher indicate a large effect.

Baseline AS, ABT, and anxiety predicted anxiety at 1-year follow-up (ps < .05). Additionally, baseline AS and anxiety predicted AS at 1-year follow-up (ps < .05). Importantly, the interaction effect between baseline AS and ABT significantly predicted anxiety at 1-year follow-up (p < .01; see Figure 2). The interaction effect was further explored using simple slopes analysis (Aiken & West, 1991). Simple slopes analysis consists of constructing two simple regression equations in which the relationship between the predictor variable and the outcome variable is tested at both high (+1 SD) and low (-1 SD) levels of the moderating variable (i.e., ABT). Simple slopes analysis revealed a significant positive association between AS and anxiety at high (β = .51, p < .001), but not low (β = -.04, p = .78), levels of ABT.

Discussion

In an attempt to better understand the individual difference factors that lead to anxiety, we examined AS and ABT as prospective predictors of anxiety. Consistent with previous research (e.g., Bardeen et al., 2014; Ehlers, 1995; Schmidt et al., 1997), AS prospectively predicted anxiety. This small-medium effect remained significant even after accounting for baseline anxiety. Moreover, a small-medium effect was observed for the relation between baseline ABT and anxiety at 1-year follow-up after controlling for baseline anxiety. These findings suggest that both AS and ABT are cognitive vulnerability factors for the development of
anxiety. Importantly, we found support for the proposed interactive effect; individuals high in AS at baseline reported relatively higher anxiety at the 1-year follow-up, but only if they also exhibited higher levels of ABT at baseline. The magnitude of the interaction was medium in size and the magnitude of the simple slope (i.e., the relation between AS and anxiety at high levels of ABT) was large. The interaction effect accounted for significant unique variance in anxiety at the 1-year follow-up when accounting for baseline anxiety. This is especially noteworthy because large autoregressive effects are typical when measuring anxiety over time. To our knowledge, this is the first empirical study to report this interaction effect and provide prospective evidence that it serves as a risk factor for relatively higher anxiety symptoms.

Results are consistent with the proposal that AS may not lead to the development of anxiety without the presence of other requisite conditions (i.e., preferential processing of threat stimuli). Although this finding provides an important step forward in understanding the conditions under which AS leads to anxiety, an important question remains as to why some individuals with heightened AS preferentially process threat information, while others do not. As described, some have suggested that heightened AS increases vigilance toward anxiety-provoking external stimuli (Hunt, Keogh, & French, 2006), thus resulting in faster identification of threat, heightened fear responding, and the development of anxiety. This conceptualization suggests that AS and ABT go hand-in-hand. However, the present results suggest that there is a subgroup of individuals among those with heightened AS who maintain attention on neutral stimuli in the presence of threat. The difference between these groups may be explained, at least in part, by differences in top-down attentional control (i.e., the effortful allocation of attention to goal-relevant stimuli in the face of conflicting prepotent stimuli that draw on more automatic attentional responses tendencies; Sarapas, Weinberg, Langenecker, & Shankman, 2017).
Specifically, a number of studies have provided empirical evidence that, among those with fear-related distress (e.g., trait anxiety, posttraumatic stress), higher (versus lower) attentional control is associated with faster disengagement from threat stimuli (e.g., Bardeen & Orcutt, 2011; Bardeen, Tull, Daniel, Evenden, & Stevens, 2016; Derryberry & Reed, 2002; Ho, Yueng, & Mak, 2016; Taylor, Cross, & Amir, 2016). As such, individuals in the present study with higher AS and relatively lower ABT may be using attentional control to shift attention from threat stimuli. Using attentional control in this manner may aid in the down-regulation of sympathetic nervous system arousal and short-term emotional distress, thus decreasing the likelihood that less adaptive strategies that are known to maintain and exacerbate anxiety will be used (e.g., physical escape, substance use).

Study limitations must be acknowledged. Although our use of the DASS-21 Anxiety Scale score as a quantitative measure is consistent with a dimensional model of anxiety (Crawford, Henry, Crombie, & Taylor, 2001), it may be beneficial to assess for anxiety disorders (i.e., DSM-5; American Psychiatric Association, 2013) in this area of research in the future. Additionally, given our reliance on an undergraduate student sample, it will be important to replicate these findings in clinical samples in future research. However, it is noteworthy that although the sample was not specifically clinical, considerable variability in DASS-21 Anxiety Scale scores was observed; approximately 33% of the baseline sample and 40% of the follow-up sample reported anxiety that was not in the “normal” range (Lovibond & Lovibond, 1995a). Although significant differences were not observed between those who attrited and those who completed the follow-up assessment, the relatively small follow-up sample is a limitation of this study.

As described, multiple temporal hypotheses have been put forth regarding the nature of
relations among AS, ABT, and anxiety. As mentioned, we believe that the relationship between these constructs is likely bidirectional and mutually reinforcing (Van Bockstaele et al., 2014; Eysenck, 1997). For example, in the present study, AS and ABT predicted follow-up anxiety, and baseline anxiety predicted follow-up AS. Unfortunately, we were not able to test the full range of temporal relations among these variables because ABT was assessed at baseline only. It will be important to assess ABT, as well as AS, anxiety, and other potentially important constructs (i.e., attentional control, experiential avoidance) at multiple time points in future research. Lastly, ABT is a polysemous construct that has been assessed using a wide variety of methods. It will be important to incorporate other methods of assessing ABT (e.g., covert attention, attention to internal cues) into future study designs to determine whether the observed effects are specific to overtly assessed visual ABT, or are more broadly applicable.

Despite these limitations, the present study is the first to provide temporal evidence that AS may only be a vulnerability factor for anxiety among those who exhibit a bias for attending to threat information. As such, individuals with this combination of vulnerability factors (high levels of both AS and ABT) may benefit from preemptive efforts to reduce ABT. Automated attention training programs for treating anxiety and related disorders may be useful toward this end. The majority of these programs were designed to train attention away from threat and toward positive or neutral stimuli. Although some recent meta-analytic evidence and literature reviews have called the utility of these programs into question (e.g., Cristea, Kok, & Cuijpers, 2015, Hakamata et al., 2010, Mogg & Bradley, 2016), results of the present study suggest the possibility that equivocal findings may be a function of a one-size-fits-all approach to the use of these techniques. For example, the present results suggest the possibility that attention modification may be particularly useful for individuals with high AS and high ABT, but not for
individuals with high AS who have the ability to maintain focus on non-threat stimuli when threat stimuli are present. Before this hypothesis is tested, additional factors that likely influence the efficacy of these programs, such as individual differences in attentional control and experiential avoidance (see Mogg & Bradley, 2016), should be considered to further refine the process of identifying those that might receive maximal benefit from this type of treatment.

Declaration of interest

The authors declare no conflicts of interest regarding this submission.
References

Table 1

Descriptive Statistics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Means</th>
<th>SD</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Baseline Anxiety</td>
<td>3.17</td>
<td>3.65</td>
<td>.81</td>
</tr>
<tr>
<td>2. Baseline ASI Total</td>
<td>15.56</td>
<td>12.44</td>
<td>.91</td>
</tr>
<tr>
<td>3. Baseline ASI Cognitive</td>
<td>3.09</td>
<td>4.50</td>
<td>.80</td>
</tr>
<tr>
<td>4. Baseline ASI Physical</td>
<td>3.97</td>
<td>4.65</td>
<td>.81</td>
</tr>
<tr>
<td>5. Baseline ASI Social</td>
<td>8.51</td>
<td>5.48</td>
<td>.73</td>
</tr>
<tr>
<td>6. Baseline ABT</td>
<td>0.57</td>
<td>0.09</td>
<td>.65</td>
</tr>
<tr>
<td>7. 1-year Anxiety</td>
<td>4.11</td>
<td>4.7</td>
<td>.89</td>
</tr>
<tr>
<td>8. 1-year ASI Total</td>
<td>19.19</td>
<td>13.78</td>
<td>.93</td>
</tr>
<tr>
<td>9. 1-year ASI Cognitive</td>
<td>4.51</td>
<td>5.14</td>
<td>.87</td>
</tr>
<tr>
<td>10. 1-year ASI Physical</td>
<td>4.59</td>
<td>4.73</td>
<td>.83</td>
</tr>
<tr>
<td>11. 1-year ASI Social</td>
<td>9.92</td>
<td>5.98</td>
<td>.81</td>
</tr>
</tbody>
</table>

Note. SD = standard deviation; α = Cronbach’s Alpha (internal consistency); Baseline = initial assessment session; Anxiety = DASS-21 Anxiety Scale score; ASI = Anxiety Sensitivity Index–3; ABT = percent of time attending to threat versus neutral stimuli for neutral-threat presentations; 1-year = 1-year follow-up assessment session.
Figure 1. Path model with standardized path coefficients. *p < .05. **p < .01. ***p < .001.
Figure 2. The interaction between baseline anxiety sensitivity (AS) and attentional bias to threat (ABT) predicting anxiety at 1-year follow-up.